Cluster Tilting and Complexity

نویسنده

  • PETTER ANDREAS BERGH
چکیده

We study the notion of positive and negative complexity of pairs of objects in cluster categories. The first main result shows that the maximal complexity occurring is either one, two or infinite, depending on the representation type of the underlying hereditary algebra. In the second result, we study the bounded derived category of a cluster tilted algebra, and show that the maximal complexity occurring is either zero or one whenever the algebra is of finite or tame type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTRODUCTION TO HIGHER CLUSTER CATEGORIES

In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.

متن کامل

On the Relation between Cluster and Classical Tilting

Let D be a triangulated category with a cluster tilting subcategory U . The quotient category D/U is abelian; suppose that it has finite global dimension. We show that projection from D to D/U sends cluster tilting subcategories of D to support tilting subcategories of D/U , and that, in turn, support tilting subcategories of D/U can be lifted uniquely to weak cluster tilting subcategories of D.

متن کامل

Cluster Tilting vs. Weak Cluster Tilting in Dynkin Type a Infinity

This paper shows a new phenomenon in higher cluster tilting theory. For each positive integer d, we exhibit a triangulated category C with the following properties. On one hand, the d-cluster tilting subcategories of C have very simple mutation behaviour: Each indecomposable object has exactly d mutations. On the other hand, the weakly d-cluster tilting subcategories of C which lack functorial ...

متن کامل

Almost Complete Cluster Tilting Objects in Generalized Higher Cluster Categories

We study higher cluster tilting objects in generalized higher cluster categories arising from dg algebras of higher Calabi-Yau dimension. Taking advantage of silting mutations of Aihara-Iyama, we obtain a class of m-cluster tilting objects in generalized m-cluster categories. For generalized m-cluster categories arising from strongly (m + 2)-Calabi-Yau dg algebras, by using truncations of minim...

متن کامل

Equivalences between cluster categories

Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. These results are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that the tilting functor HomH(T,−) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010